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Abstract. We study a thermal boundary condition which is robust and applicable to a wall along which temperature 
varies. A framework to derive robust thermal boundary conditions using the Maxwell-Boltzmann statistics is proposed 
for the purpose of the thermal boundary condition of the discrete kinetic theory. The thermal exchange between fluid 
particles and walls is achieved by using the relation between the velocity change rate and temperature so that we can 
control the velocity change rate according to a given temperature boundary condition. We simulated microchannel flows 
by the lattice gas cellular automata and the direct simulation of Monte Carlo. 
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INTRODUCTION 

The flow in a microchannel is an attractive subject because this has various phenomena still difficult to simulate 
and the development of microscale devices stimulates the need of this study. The boundary condition is one of the 
important theme to understand the microchannel flow. The thermal exchange between fluid particles and walls can 
be described by the velocity change of the fluid particles after their collision to walls. In the paper [1], we derived 
the relation between the velocity change rate and temperature. By using this relation, we simulated microchannel 
flows having a thermal boundary condition to a wall along which temperature varies by the lattice gas cellular 
automata. In this paper, we shortly introduce the derivation of a relation between the velocity change rate of particles 
and a given temperature. This relation was obtained for the 19-velocities model, which is hexagonal and two-
dimensional by using the Maxwell-Boltzmann statistics. We introduce the simulation results obtained by the lattice 
gas cellular automata [1]. In addition, we present the simulation results obtained by the direct simulation of Monte 
Carlo (DSMC). The thermal boundary condition used in the simulation of the DSMC is different from that used in 
the simulation of the lattice gas cellular automata. 

RELATION BETWEEN VELOCITY CHANGE RATE AND TEMPERATURE 

This is a summary presented in the paper [1] in which the detailed explanation is given. We define discrete 
velocities of a two-dimensional model in a general form by 
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where 0 1 20 ...... mc c c c≤ < < < <  and 1 1n− = − . If we consider a homogeneous lattice space, it is natural that we 
have a property of kθ  which is  1( ) 2k k kn n θ π−− =  where 1,2, ,k m= . We define a rate of velocity change ,Pα β  
from vα  to vβ  as a result of the heat exchange between a site on a boundary and molecules which collide with the 
site. The velocity vα  corresponds to the incident molecule and vβ  to the reflected molecule. 

We make two hypotheses H1) and H2). 
 

H1) When the particle colliding with a wall is heated, i.e., the temperature 0τ  before interaction with the wall is 

lower than the boundary wall temperature wτ  at a position on a wall, we assume that ,P 0α β =  when v vα β≥  and 

,P 0α β ≥  when v vα β<  for the case of α β≠ . If α β= , it is possible that ,P 0α β >  because ,Pk k  indicates the rate 
of molecules which maintain their initial velocity. Similarly, when the particle colliding with a wall is cooled, i.e., 
the flow temperature 0τ  is higher than the boundary wall temperature wτ , we assume that ,P 0α β ≥  when v vα β>  

and ,P 0α β =  when v vα β≤  for the case of α β≠ . A temperature gradient can be implanted on a wall by adjusting 

,Pα β . 
We define an index set{ }kc , utilizing a velocity amplitude kc  in Formula (1), by 1 1{ } { 1, 2, , }k k k kc n n n− −= + +  

where 0,1,2, ,k m= . In addition, an element of { }kc  is defined by { }k kc c∈ , i.e., a certain index in the index set of 

{ }kc . We will use this definition, for example, { }, ,P P | { }
kc i ki cα α∈ ∈ . We define the number density if  by the 

number of molecules, having the discrete velocity iv , per unit volume. Generally, we can say  
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Formula (2) shows that the number density at temperature τ , can be described with the number densities at 
temperature 0τ . At temperature τ , the molecules having a discrete velocity kv  are composed of some of the 
molecules having a discrete velocity kv  at 0τ , i.e. , 0P ( , )k k kf uτ  and the molecules initially having discrete velocities 

iv   where i k≠  at 0τ  but becoming kv , i.e. , 0
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H2) When 0u ≈ ;  
(1) 

0 0, ,P Pc cα β=  where { }, kcα β ∈  and 1,2, ,k m= .  
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(3) ( , ) ( , )f u f uα βτ τ=  where { }, kcα β ∈  and 0,1,2, ,k m= . 
 
We define ,l pG  by the relation , 1P( ,[ ]) P( ,[ ])l p l p l lc c G c c +=  where , 1 1l lG + = . The physical meaning of ,l pG  is the 

ratio between the probability sum of the velocity amplitude change from lc  to pc  and that from lc  to 1lc + . 
If we apply H2 on Formula (2), we obtain 
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where 1,2,..., 1k m= −  and  
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model where the discrete velocities are given by 
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If we express P( ,[ ])l pc c  by the density distributions from Formulas (3), (4), and (5); and basic calculations [1], we 
have, 
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According to the solution of the two-dimensional hexagonal 19-velocities model of the thermal lattice Boltzmann 
method [2], we can obtain ( , )

kcf uτ  and 0( , )
kcf uτ  in Formulas (7), (8), and (9). When 0u ≈ , we can substitute 

them by 
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where 0/τ τ τ= , 0 0.164w = , 1 0.310w = , 2 0.011w = , 3 0.015w =  and 1.115r = . 
We should find ,l pG  in Formulas (7), (8), and (9). For this purpose, we define Nαβ  by the number of particles 

which change their velocity amplitude from cα  to cβ  after collision with a wall and by analogy Nαδ  from cα  to cδ  
in general cases of a discrete velocity system. When the heat transferred from the wall to the particles is EΔ , the 

number of possible cases for the combination of Nαβ  and Nαδ  is 
( )!
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calculate the most probable case by virtue of the Lagrange multiplier denoted by χ . We define   
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0α = , 1β =  and 2δ = , Formulas (11) and (12) become 0,2 1ln(1 )G χε+ =  and 1
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χε+ = , respectively. If 

we eliminate 1χε  in the last two equations, we obtain 
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Formula (13) has a positive real valued root 0,2 0.466G ≈ , which is the only positive root. Similarly, we can 
obtain the values of ,l pG . We derived the velocity change rate as Formula (14) for 19-velocities model. This is for 
the case of heating by collision. 
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SIMULATION RESULTS 

We performed a simulation by the lattice gas cellular automata using Formula (14). Figure 1 shows the thermal 
boundary condition implanted on the longitudinal wall of the microchannel. The left half of the longitudinal wall of 
the microchannel has a decreasing temperature gradient. The right half is an adiabatic wall. Figure 2 shows the 
temperature distribution. This figure shows only the half of the microchannel with respect to the longitudinal central 
axis. The dimension of the microchannel is 1 mμ  width and 10 mμ  length, connected with two chambers of 2 mμ  
length. The bounce-back reflection scheme is used on the wall. The entrance boundary values of pressure, density, 
temperature, and velocity are identical to the exit ones. Therefore, there is no significant pressure or velocity 



gradient on the calculation domain. We observe that the left part of the microchannel is heated according to the 
implanted boundary condition. 
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FIGURE 1.  The thermal boundary condition implanted             FIGURE 2. The temperature distribution in the microchannel [1]. 
on the longitudinal wall [1]. 
 

Figures 3 and 4 show the thermal boundary condition and the corresponding temperature distribution, 
respectively. Note that the other conditions are same to the previous case of Figures 1 and 2. We observe that the 
central part of the microchannel is heated according to the implanted boundary condition. 
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FIGURE 3.  The thermal boundary condition implanted             FIGURE 4. The temperature distribution in the microchannel [1]. 
on the longitudinal wall [1]. 

 
Figures 5, 6, and 7 show the pressure, temperature, and longitudinal velocity distributions obtained by the 

DSMC, respectively. The dimension of the microchannel is 1 mμ  width and 10 mμ  length, connected with two 
chambers of 7 mμ  length. The diffuse reflection scheme is used. Along the wall of the microchannel, the given 
thermal boundary condition is that temperature decreases linearly from 500K to 300K. The entrance initial boundary 
values are 500K, 51.3 10× Pa, and the number density of 251.88 10× . The exit initial boundary values are 300K, 

51.0 10× Pa, and the number density of 252.41 10× . The horizontal axis Z represents the normalized longitudinal 
position and the vertical axis represents the normalized pressure and temperature in Figures 5 and 6; and longitudinal 
velocity in Figure 7. 
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FIGURE 5.  Pressure distribution.           FIGURE 6. Temperature distribution.     FIGURE 7. Longitudinal velocity distribution. 

 
Figures 8, 9, and 10 show the pressure, temperature, and longitudinal velocity distributions obtained by the 

DSMC, respectively, as Figures 5, 6, and 7. However, several conditions are different. The length of the two 
chambers is 2 mμ  in common. The walls are adiabatic. The entrance initial boundary values are 330K, 

51.1 1.3 10× × Pa, and the number density of 253.14 10× . The exit initial boundary values are 300K, 51.3 10× Pa, and 



the number density of 253.14 10× . We can observe that the temperature in the channel region is constant in contrast 
to the temperature profile having a steep slope in Figure 6. 
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FIGURE 8.  Pressure distribution.            FIGURE 9. Temperature distribution.     FIGURE 10. Longitudinal vel. distribution. 

CONCLUSION 

We studied a thermal boundary condition which is robust and applicable to a wall along which temperature 
varies. A framework to derive robust thermal boundary conditions using the Maxwell-Boltzmann statistics was 
proposed for the purpose of the thermal boundary condition of the discrete kinetic theory. The thermal exchange 
between fluid particles and walls was achieved by using the relation between the velocity change rate and 
temperature so that we could control the velocity change rate according to a given temperature boundary condition. 
We had simulated microchannel flows by the lattice gas cellular automata and lattice Boltzmann method [3, 4]. 
However, the results in the paper [3] did not treat the thermal boundary condition on walls and the results in the 
paper [4] did not relate the temperature and the velocity change rate. In this paper, we related the temperature and 
the velocity change rate. In addition, we obtained the simulation results by the direct simulation of Monte Carlo. 
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